
ISRAEL JOURNAL OF MATHEMATICS 119 (2000), 127-142 

SMALL PERTURBATIONS AND STOCHASTIC GAMES 

BY 

NICOLAS VIEILLE 

Laboratoire d'Economdtrie, Ecole Polytechnique 
1 rue Descartes, 75 005 Paris, France 

and 
Grape, Universitd Montesquieu Bordeaux 

av. Duguit, 33608 Pessac, France 
e-mail: vieille@poly.polytechnique.f~r 

ABSTRACT 

The purpose of this note is to apply results from the theory of Markov 

chains with rare transitions to stochastic games. The results obtained 

here are used in the proof of existence of equilibrium payoffs in two-player 
stochastic games. 

Introduct ion  

The main purpose of this note is to apply results from the theory of Markov chains 

with rare transitions to stochastic games. These results are briefly introduced in 

the beginning of Section 1. Section 1 also contains additional results. Applica- 

tions to stochastic games are given in Section 2. These results are extensively 

used in [10]. 

Throughout the paper, we use C_ and C for weak and strict inclusion 

respectively. 

1. Markov chains 

Most results in Section 1.1 are fairly standard. We refer to [1] for a detailed 

survey. Our presentation differs in two respects. First, our setup differs from the 

usual Markov chain setup in which the transition is assumed irreducible. Second, 
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the literature on Markov chains with rare transitions assumes that  the transitions 

satisfy a large deviation principle. We make no such assumption. Even though 

our t reatment  eventually turns out not to introduce additional generality (see 

Section 1.3), it allows one to define a convenient compactification of a set of 

transition functions. 

1.1 INTRODUCTION. 

Let S be a finite set and F be a directed graph on S. We let S* denote the set 

of sinks for F, i.e., the set of vertices s C S, such that  no edge is incident out of 

s. We assume that  S* r 0, and that  for each s E S, there exists a path from s 

to S*. 

Let (9 be the set of all transition probabilities p on S, such that  

p(s'ls ) > 0 r (s, s') is an edge of r .  

Let (Sk)k>_l be a Markov chain on S, with transition p E (9, and initial s tate 

s C S. We denote by Ps,p the law of (Sk). The assumption on F is equivalent to 

saying that  the elements of S* are absorbing states, and that  (sk)k reaches S* in 

finite time, whatever s. 

For C C S\S*,  we let ec = inf{k > 1, sk • C} be the stage of first exit from 

C, and we let Qs,p(-]C) denote the law of See. It  is well-defined since ec < +co, 
Ps,p-a.s. For s E C, we denote by r8 = inf{k > 1, sk ---- s} the first return to s. 

Freidlin and Wentzell expressed Qs,p(.IC) in terms of graphs. For C C S\S*,  
define a C-graph to be a subgraph g of F such that  

�9 for each s E C, there is exactly one edge incident out of s; we denote by 

g(s) its endpoint; 

�9 for each s ~ C, there is no edge incident out of s; 

�9 g has no loop. 

It  is clear that  for every s C C, there is a unique state s t r C, such that  g 

contains a pa th  from s to s'; moreover, this path is unique. In such a case, we say. 

that  s leads to s t in g. We denote by Gc the set of C-graphs and by Gc(s  --+ st), 

s E C, s ~ ~ C, the set of g C Gc, such that  s leads to s t in g. 

All graphs in the paper will have S as set of vertices. Thus, we shall identify 

without ambiguity each graph with its set of edges. For instance, a subgraph of 

F is simply a subset of its set of edges. 

Given p E (9, and g E G c ,  we define the weight of g under p by 

= 1--[ 
(s,s') edge of g 
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By [2] (Chapter 6, Lemma 3.3), one has 

wp(g) 
(1) Os,p(s'lC) = E G o  wv(g) 

for every s E C, s ~ ~t C, 

Let g be the (finite) set of non-empty subgraphs of F. In the sequel, we let a 

sequence (pn),~ in 0 be given, such that 

0(91,92)= lim WP"(91) 
n---r+oo Wpn(g2) 

exists, for each gl, g2 E g. We describe the asymptotic behavior of the sequence 

We denote by 

G~ in = {g E G c  such that O(g',g) < +oo, for every g' E Go} 

the set of C-graphs g such that no graph is infinitely more probable than g. Ob- 

serve that  G~ in ~ 0. Indeed, let .~ E G c  be such that wv, (.~) = maxgec c wp. (g) 

for infinitely many values of n. Hence 

O(g, ~) = lim wp,~ (g) < 1, 

for every g E Go. 
Let ~ E G~ in. By definition, 0 < O(g, .~) < +co for every g C Gc and O(g, gl) > 

0 if and only if g E G~ i'. 

Given s E C, s' r C, we set G~in(s --+ t) = G~ in N GC(8 -4 t). 

LEMMA 1: The following properties hold: 
1. pO = limn~+oo Pn exists; 
2. for every C C S\S*, s E C, t ~ C, Qs,0(tlC) = lim,_~oo Qs,p, (tiC) exists 

and 
Q~,o(tlC) = lim EgeG~in(8~t)wp,(g) 

I~"+OO E~EG~ in Wpn (a) 

We define the numerator on the right-hand side as zero if G~in(s --+ t) -- ~. 

The use of the letter 0 is motivated by the remark that follows. 

Proo~ Let s E S, and (s, 8) be an edge of F. By assumption, for every s ~, the 

sequence 
(pn(s'ls)  

pn(sls) ]n 
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has a limit when n --+ +oo. Since ~ , e s p n ( s ' l s  ) = 1 for every n, the first claim 

follows. 

Fix go 6 G~ in. Then 

~p. (9) 
~geCc(8-+~) ~ .  ( g o )  ~gecc(8-~) e(g, go) q s , p . ( t l c )  = 

EgeCc ~'p.(9) EaeGc. 8(g,go) ~o,, (go) 
~ecT, . ( ,~ ,  ) e(g, go) 

E o  . . , .  o(g, go) ' :,6G c 

where the denominator is positive since 8(g0, go) = 1, and finite since go 6 G~ in. 
| 

In particular, Qs,e(tlC ) > 0 if and only if G~m(s ~ t) • @. For t 6 C, we set 

Qs,e(tlC ) = 0. Observe that qs,e(.IC) is a probability distribution over S. 

Remark 2: Define a map r O --+]0, +cc[ g• by 

r  Wp(gl) f o r e v e r y p 6 0 ,  g l , g 2 6 ~ .  
wp(g2) ' 

Clearly, r is an homeomorphism onto its image. Define O as the closure of r 

(the topology on [0, +oo] is the usual one, and [0, +oc] ~• is endowed with the 

product topology). The topological properties of O have been studied, along with 

various variations, in different setups (see [3, 6, 8] for instance). The space O 

provides a compactification of (9, which is convenient when using, for instance, 

fixed-point techniques (see [7, 4] for examples in stochastic games and equilibrium 

refinements). 

1.2 COMMUNICATING SETS. For fixed n, the Markov chain with transition 

function p,, reaches S* in finite time. The law of the absorbing state s~s\ s. 
converges to Q,,e(.IS\S*) as n goes to infinity. We now describe in more detail 

the asymptotic behavior, as n goes to infinity. Let C C_ S\S* be a recurrent 

set for pe. Informally, if the initial state belongs to C, the (random) number of 

visits to any given state of C, prior to ec, increases to oo as n increases to co. 

The sets which satisfy this property are called communicating for 0. Formally, 

we introduce the following definition. 

Definition 3: Let C C_ S\S* be nonempty. C c o m m u n i c a t e s  for 8 if 

(2) lim Ps ,p , (ec  < rt) = O, for every s , t  6 C. 
n - - + o o  
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We denote by C(0) the collection of communicating sets for 0. Let C E C(O), 
and t E C. Observe that lim,~+oo Pt,p, (rt < ec) = 1. Denote by No( t )  = 

[{1 < k < ec, sk = t}l ~he number of passages in t before ec. Since 

Ps,p. (Nc(t)  >_ 2) = P~,p. (rt < ec) x Pt,p. (rt < ec), 

one has lim,Hoo Ps,p. (No(t)  > 2) = 1 and, more generally, 

lim P~,v.(Nc(t)  _> q) = 1, for each integer q. 
n--+-I-oo 

Condition (2) is equivalent to Qs,o(tlC\{t}) = 1, for every s , t  E C, s r t. 
min Therefore, for any t E C, and 9 E Gc\{t  }, each state in C\{ t }  leads to t in 9- 

More generally, the following property holds. 

LEMMA 4: Let 0 r D C C and s E D. One has 

Qs,o(C[D) = 1. 

Proof: Let s' ~ C, and t E C\D.  Clearly, Q~,o(s'lD ) <_ Q~,o(s'lC\{t}) = O. 

I 

It is convenient to introduce the union C(0) of C(0) and of the singleton sets 

{s}, s E S\S* .  Observe that g(0) is the collection of sets C c_ S \S*  which satisfy 

lim P~,p, (ec < r2) = 0, for every s, t E C, 
n - - +  o o  

where r~' = inf{n _> 1, s,~ = t} is the first passage time in t. The elements of 

d(0)\C(0) are the singleton sets which are transient for pO. 
Observe that  C1 U C2 E C(0) as soon as C1 n C2 r 0. Therefore, C(0), ordered 

by inclusion, has the structure of a forest (a collection of disjoint trees). 

In this structure, the sons of C E C(0) are the maximal elements of C(0) that  

are strict subsets of C. Since C(0) contains the singletons, the sons of C form a 

partition of C. 

LEMMA 5: Let C E d(O), and s,s '  E C. One has Qs,0(.IC) = Q~,,0('[C). 

Proof: For n E N, and t ~ C, one has 

Ps,p.(s~ c = t) = Ps,v. (s~ e --- t, ec < r~,) + Ps,p.(ec > r*,) x Ps,,v.(s~c = t). 

The result follows by letting n go to infinity. I 

We simply write Q0('[C) instead of Qs,o(.[C) when C E d(O). We provide 

now a characterization of communicating sets. Let C C_ S \S*  be given. Let 7?c 
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denote the collection of the maximal strict subsets of C that belong to C(0). :De 

is simply the set of sons of C if C E C(0). The next lemma simply says that C 

is a communicating set if and only if the collection of its sons is closed for the 

transition function defined by the exit distributions. 

LEMMA 6: C E C(0) if  and only if  

(3) Q0(CID) --- 1 

Proof: (3) is a necessary condition. 

for each D E :De. 

Assume now that (3) holds. Let ~ be the 

transition function on C defined by ~(.[s) = Qe(-[D) if s E D, with D E :Dc, and 

let C c_ C be a recurrent set for ~. We shall argue that C E C(0). Since C' is the 

union of at least two sons of C, this implies C = C, by definition of :De. 

Let t E C be given. For s E C, define un(s) = Ps,p,(r~ < ev). We need to 

prove that  u(s) = limn~oo un(s) = 1, for each s E C. Let s E D, with D E :De. 

One has 
u,(s )  = Ps,p,(r; < ec) 

= Z Qs,pn(s'[D) x Ps, ,p , ( r ;  < ec). 
s'EC 

By letting n --+ § c~, one gets 

u ( s )  = 

s'E(~ 

hence u is harmonic with respect to ~. Since C' is a recurrent set for ~, u is 

constant on C. Since un(t) = 1 for each n, the result follows. I 

A useful by-product of the previous proof is the following. 

LEMMA 7: Let CE C(O), and let :De be the collection of its sons. Then C is a 

recurrent set for the transition function ~ defined on C by ~(.Is) = Qe(-ID) i f  

s E D with D E :De. 

This characterizes the elements of C(0) as the recurrent sets corresponding to 

different levels of exit. 

LEMMA 8: Let C E C(O). 

1. Let D C C, and g E G~ in. All paths of g end up in C. 

2. Let g E G~ in. There is a unique s E C, such that g(s) q~ C. 

Proof: Since Q0(CID ) -- 1, one has Gn~in(s --+t) = 0, for each s E D, t • C. This 
G rain and let so E C be a state such proves the first part of the lemma. Let g E c , 

that  g(so) q~ C. Given any C\{so}-graph gv\{so}, the union ~'c\(so}U{(so, g(s0))} 
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rain is a C-graph. Since g E G c , the restriction ~ of g to C\{so} thus belongs to 

GC\{so}.min Since Qo(soiC\{so}) = 1, all paths of ~ lead to so. In particular, 

g(s) e C, for each s E C\{s0}. | 

We conclude this section with few useful properties. The next result is a 

consequence of the fact that, for C 6 C(0), no strict subset of :De is closed under 

exit distributions 

LEMMA 9: Let C E C(0), and let :Dc be the collection of its sons. Let l)' be a 
strict subset ofT)c, and g E G min For each D E l) t, the restriction gD of g UD6~D" 
to D belongs to G~) in. 

Proo~ It is enough to construct, for each D E /)', a D-graph gD E G~ in such 

that UDe9,OD is a UDev, D-graph. Let ~ b e  the transition function defined on 7:)c 
by the exit distributions: ~(D'ID ) = Qo(D'ID), for D, D' E l)c. By Lemma 7, 

is irreducible. Therefore, there exists a Z)'-graph "), such that ~('y(D)ID ) > 0 for 

each edge (D, 7(D)) of % For D E 9 ' ,  choose t E 7(D) such that Qo(tlD ) > 0, 
and gD E G~'n(s -+t) (where s E D is arbitrary). By construction, UDe9,OO is 

a UD~9,D-graph. | 

ra in  LEMMA 10: Let C, D, E 6 C(0) be given, with C C D C E. Let gF.\D E GE\ D, 
min gD\C 6 GD\ c. The union gE\D U gD\C belongs to GE\C. 

Proos All paths of gD\C end up in C, hence gE\D tJ gD\C has no cycle. | 

1.3 MARKOV CHAINS WITH PUISEUX TRANSITION FUNCTIONS. In the liter- 

ature on large deviations and simulated annealing algorithms, a one-parameter 
family (Pc) of transition probabilities is given, and one studies its asymptotic 
behavior, as e goes to zero. It is assumed that, for each s, s' 6 S, pe(s'ls ) .-, 

~r(s, s')e ~(8,*') for some r(s, s'), d(s, s') >_ O. 
We relate the previous section to this assumption, and derive a few auxiliary 

properties. 
Let (Pc)e>0 be a family of elements of O, indexed by e > O. Assume that, for 

each edge (s, s') of F, 

lim Pe(S'lS) 
 r(s, s')ed(', '') 

Clearly, 

8(gl, g2) = lim Wp, (gl) 
- - , + =  wp,(g2) 

- 1, for some r(s ,  s') > 0, d(s, s') >_ O. 

0 
1-I(,,,,)e n ,~(s,,') 

= l-I(,,,,)eg~ ,r(8,s,) 
+oo 

ifd(gl) > d(g2) 

ifd(gl)=d(g2) 

 d(gl) <d(g2) 
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where d(g) = ~'~(8,s')eg d(s, s') for g e G. 
The next result shows that there is essentially no loss of generality in 

considering only this type of transition. 

LEMMA 11: Let (Pn) be a sequence in (9 such that 

O(gl,g2) = lim wp,(gl) 
. - , o o  w p .  

exists for each gl,g2 E ~. There exist ~o > 0 and a family (Pe)~<~o such that the 

following two properties hold: 

1. lim~-~0 ~p~(91) = 0(gl,g2) for each gl,g2; wp~ (g2 ) 
2. for each edge (s, s') of F, the function e ~+ p~(s'[s) has an expansion in 

Puiseux series on (0, eo): 

+eo 

p~(s'[s) = E akek/g'  for some real numbers (ak)keN and g E N. 
k=O 

Proof." For e > O, define K~ as the set of vectors p E R s• such that: 

1. p E O ;  

{ 1-I(s,8,)egl p(s'ls) <_ z [I(8,~,)eg~ P(S'lS) if 0(91, g2) = 0 

2. O ( g l , g 2 ) - ~ <  ]-I('"')env(~'ls) <O(gl ,g2)+e ifO<O(gl,g2) < + c o  
- I ] ( ~ , , , ) e ~  v ( ~ ' l ~ )  - 

for every g~, g2 E 0. 
The set Ke is non-empty for E > 0 small enough. The set ((c,p), e > 0,p e K~} 

is defined by a finite number of polynomial equalities and inequalities, i.e. is a 
real semialgebraic set. The result follows by repeating the proof of Lemma VII 

2.2, p. 394 in [5]. | 

We define the va lua t ion  of C c_ S\S* as 

dc = mingeccd(g) 

(and d o = 0). We interpret some of the previous results in terms of valuation, 

and give additional results. First, observe that Gr~ i" = {g e Gc,  d(g) = de}. 

LEMMA 12: Let A and B be disjoint subsets orS\S*.  One has dAUB >_ dA +dB. 

Proof: For each g E GAuB, the restrictions gA and gB to A and B belong 

respectively to GA and GB, and 

d(g) = d(gA) + d(g.) .  
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The result follows by taking the infimum over g. I 

The next result, a consequence of Lemma 9, gives a condition under which 

equality holds. 

LEMMA 13: Let C E C(~), l )6  be the collection of its sons, and 1)' C :Dc be 

given. One has 

duDev, D = ~ dD. 
DE:D' 

The next result is a corollary of Lemma 10. 

LEMMA 14: Let C, D, E E C({)) be given, with C C_ D C E. One has 

dE\ C : dE\ D + dD\c. 

In the sequel, we let So E S\S* ,  and ~ > 0 be given. 

minimal element of C(0) such that 

We define D as the 

(4) So E D and dD > dD\{8o} + 5[DI. 

We assume that such a set exists. 

LEMMA 15: Let C E C(0), with C C D. Assume So E C. Then dc < dc\{8o} + 

6161. 

Proof  The claim is clear if C E C(0), by the minimality of D. Otherwise, C is 

a transient state, hence de = 0. I 

LEMMA 16: For every sl E D, one has 

riD\{**} ~ dD\{~o} + 5(IDI - 1). 

Proof: Let sl E D. If so = sl,  there is nothing to prove. We thus assume 

sl ~ so. Let C C_ D be the least element of C(O) that contains both so and sl. 

Let l )6  be the collection of the sons of C, and Co C C be the son that contains : 

80. 

It cannot be the case that  sl E Co. Otherwise indeed, Co would contain at 

least two states, So and sl, hence would belong to C(O)--a contradiction to the 

definition of C. By Lemma 14 (twice), dD\{,1} = dD\c + dc\{,~} and dc\{ , l l  = 

dc\(cou{,~}) + dco. By Lemma 12, dco <_ dco\{,o} + ~[Co[, therefore 

dD\{s~} <-- dD\c + dc\(CoU{Sl}) + dco\{so} q- 51Col 

< dD\{so,,1} + alCol, 
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where the last inequality follows from Lemma 12, applied twice. The result 

follows since Co is a strict subset of D. I 

COROLLARY 17: Let (s, s') be an edge ofF with s E D, s' it D. Then d(s, s') > ~. 

Proo~ The union of {(s, s')} and of a graph in GD\{8 }rain is a D-graph g such that  

d(g) = dD\{s} + d(s, s') 

_< dD\{so} + (f(]D] - 1) + d(s, s'), 

I 

2. S tochas t i c  games  

2.1 BAsIc RESULTS. We apply here the results of Section i to stochastic games. 

For convenience, we restrict ourselves to two-player games, though the general- 

ization is straightforward. 

A two-player stochastic game is described by: (i) a finite set S of states, (ii) 

finite sets A and B of actions available to players 1 and 2 respectively, (iii) a 

transition function q that specifies, for each (s, a, b) E S • A • B, a probability 

distribution q(-is, a, b) over S, and (iv) a payoff function which here is irrelevant. 

The game is played in stages. At stage k E N, the two players know both the 

past play and the current state sk; they independently choose actions ak E A, 

bk E A, possibly at random. The next state is drawn according to q('isk, ak, bk), 
and the game proceeds to stage k + 1. 

Given a finite set M, we denote by A(M) the set of probability distributions 

over M. 

The behavior of a player is characterized by a s t r a t egy ,  which prescribes, 

for each finite history, a distribution over the set of actions. A strategy that 

depends only on the current state is called s t a t iona ry .  A stationary strategy 

of player 1 can be identified with a vector x = (xs)8~s, where xs E A(A) is the 

distribution according to which player 1 chooses an action, whenever the current 

state is s. Similarly, a stationary strategy of player 2 will be identified with a 

vector y = (ys)ses, where Y8 E A(B). We denote by (91 the set of stationary 

strategies x E A(A) s with full support: xs(a) > 0 for every (s,a) E S • A. The 

set (92 of stationary strategies of player 2 with full support is defined similarly. 

Given an initial state s E S, any pair (x, y) of stationary strategies induces 

a probability distribution Ps,x,y over the space (S • A • B) N of plays. The 

coordinate process (sk, ak, bk)k>_l follows a Markov chain under Ps,~,y. 
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A state s E S is absorb ing  if q(sis, a, b) = 1 for every (a, b) E A x B. The 

subset of absorbing states is denoted by S*. We make the following assumptions: 

A1 S* ~ 0; 

A2 for every initial state s E S, and (x, y) E O1 x O2, the game reaches S* in 

finite time, Ps,x,y-a.s. 

In [9], it is proven that, in order to prove the existence of equilibrium payoffs 

in two-player games, it suffices to consider games that satisfy A1 and A2. 

In order to apply the results of the previous section, we introduce the graph F 

over S, defined by the condition 

(s, s') is an edge of F r q(s'is , a, b) > 0 for some (a, b) E A x B. 

By A1 and A2, the set of sinks for F coincides with S* and, for each s E S, there 

exists a path from s to S*. We therefore may apply the results of section 1. 

Given (x ,y )  E O1 • O2, the transition function Px,y on S defined by 

;x (s'ls) = xs(a)y (b)q(8'ls, a,b) 
(a,b)EAxB 

belongs to the set (.9 associated with the graph F. In that sense, O1 x O2 is 

embedded in the set (9 defined in Remark 2. For convenience, we write r y) 

instead of r The proofs can be extended to prove the next result. 

LEMMA 18: Let  (xn, Yn)nEN be a sequence in 01 x 02 such that O = 

l imn~+~ r y~) exists. Then: 

�9 (x o, ye) = l im._,+~(x~, y~) exists. 

�9 There exists r > 0 and a family (x ~, Y~)r of  elements of  01 x 02 such 

that  the following two properties hold: 

- lim~-~o r  ~, y~) = O; 

- for each (s, a, b) E S \ S *  x A • B,  the functions r ~-+ x~(a) and ~ ~-+ 

y~(b) have an expansion in Puiseux series on (0, eo). 

Hence, for each (s, a, b) E S \ S *  x A x B, there exist positive numbers ~rs(a), 
r~(b), ds(a), d,(b) such that x~(a) ,.~ 7rs(a)e d~(~) and y~(b) ~ 7r~(b)E d~(b) at zero. 

In the sequel, we let D E C(0), So E D, and ~ > 0 be given. We assume that, 

among the communicating sets that contain so, D is the smallest one such that 

the inequality below is satisfied: 

(5) do > dD\{so} -k 5[D[ 

(we assume that such a set exists). We conclude with a result which is motivated 

by the analysis of positive recursive games (see Vieille [10]). 
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LEMMA 19: Let F be an element of C(8) that contains D. Let g 6 G~ in and 
6 GF be given. Let (s~,g(s~)) be the unique edge ofg whose endpoint is not 

in F, and s2 6 D be a state such that 9(s2) ~ D. If Sl 6 D and Sl # s2, 

d(s2,9(s2)) > d(s2,g(s2))+5. 

Proo~ Let C be the smallest element of C(O) that contains both sl and s2, 79c 

be the collection of its sons, and C2 6 :Dc the son that contains s2. We choose 

min and let gc2 denote the union of gc2\{s~} and {(s2,y(s2))}. gc2\{82} 6 GC2\{82 } 
Observe that gc2 is a C2-graph. Since C2 6 C(8), all paths of gc2k{s2} lead to s2, 

hence all paths of gc2 lead to 9(s2) ~ m. 

Since Sl # s2, one has Sl !g C2, by definition of C. Denote by C1 the son of 

C that contains Sl. Since g 6 G~ in, the restriction of g to F\{s l}  belongs to 
min GF\{s, }rain (otherwise, substituting in g a graph in GFX{sl} to the restriction of g 

would yield a graph ~ in GF such that d(~) < d(g)). By Lemma 14 (twice), the 
min By Lemma 13, the restriction restriction gc\c~ of g to C\C1 belongs to Gckc .  

gc2 of gckc~ to C2 belongs to Gminc2 . Therefore, 

de2 = d(gc2) > dc2\{82} + d(s2,g(s2)), 

hence 

(6) d(~c2)=dc~k{s2}+d(s2,~(s2)) < dc,+d(s2,9(s2)) - d(s2,g(s2)). 

We now discuss according to the location of so in D. 

CASE 1: so ~ C2. Let E denote the smallest element of C(0) that contains both 

so and s2, g be the collection of its sons, and E2 6 g the son that contains s2. 

Hence E2 = C2 if so 6 C, and E2 D C2 if So ~ C. By definition of E, So ~ E2. 

Denote by Eo the son of E that contains So. Choose -gD\E, gE\E2 and gE~\C2 in 
min min rain GO\E, GE\E2 a n d  GE2\C 2 respectively: the paths of "gD\E lead to E, the paths 

of g'E\E2 lead to E2 and the paths of gE:\C2 lead to C2. Since the paths of g'c: 

lead to 9(s2) ~ D, the union ~ = gD\E U "gE\E2 [--j "gE2\C2 [-j "ffC2 belong to GO, 
hence 

(7) dD <_ d('gD\E) + d(gE\E2) + d(gE2\C2) + d(gc2) 

<-- dD\E + dE\E2 + dE2\C2 + de2 + d(s2,g(s2)) -d(s2,g(s2)).  

By Lemma 13, dE\E2 ---- ~~E'6$, E'r dE,. By Lemma 15, dEo <_ dEo'~{8o} +51Eol. 
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By substitution into (7), using Lemma 12, one gets 

do ~_dD\E + dEo\{so} + E dE, + dE2\C 2 + dc2 + 51Eol 
E'e$\{Eo,E2} 

+ d(s2, ~(s2)) - d(s2, g(s2)) 

<-dDi{so} + 5]Eol + d(s2,~(s2)) - d(s2,g(s2)). 

Since Eo C D, the result follows from (5). 

CASE 2: So E C2. It is enough to prove that 

(8) do ~_ dD\{so} + 51C21-~ d(82,g(s2)) - d(s2,g(s2)), 

by (5) and since C2 is a strict subset of D. 

If C2 = {so} = {s2} is a transient state, de2 = d(s2, g(s2)) = 0, hence d(gc2) = 

d(s2, g(82)) - d(s2, g(s2)). The union go of go2 and of any graph in GD\{so } m i n  is  a 

D-graph, with degree 

(9) d(~D) = dD\{8o} + d(s2, ~(s2)) - d(s2, g(s2)). 

Since d(~D) >_ do, the inequality (8) follows from (9). 

Otherwise, C2 E C(0) and C2 is a strict subset of D. By Lemma 15, de2 <__ 
dc2\(so} + 51C21. Since all paths of g'c~ lead to ~(s2) ~ F,  the union gD of go2 

rain is a D-graph that satisfies and of any graph in Go\c2 

d(gD) = dD\c: + d(~c:) 

<_ dD\c: + dr + d(s2, ~(s2)) - d(s2, g(s2)) 

< dD\c~ + dc~\(8o) + ~lC~l + d(82,~(s2))  - d ( 8 ~ , g ( ~ ) )  

~_ dD\{so} + 51621 + d(s2,g(82)) - d(s2,g(82)), 

where the first inequality uses (6), the second follows from Lemma 15, and the 

last one from Lemma 12. Hence (8) holds. | 

The next result complements the previous one, by giving a result in the case 

81 ~ 82. 

LEMMA 20: Let F be an element of C(O) that contains D. Let g e G~ in be given, 
(Sl, g(sl)) be the unique edge of g whose endpoint is not in F, and (al, bl) E A x B 

the unique pair such that q(g(sl)[sl, al, bl) > O. Assume that ds~ (al) --- O. Let 

be an F-graph, such that ~(sl) ~ D, and (~1, bl) E A x B the unique pair such 
that q(~(sl)[sl,al,bl) > O. One has 

dsl(bx) ~ 5 :=~ ds~(al) > O. 
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Proof: The union of any graph in GD\{s~}min and of {(81,.q(81))} is a D-graph gD 
with valuation 

d(gD) <_ dD\{81} + dsl (al) + 5 _< dD\{8o} + (f(]DI - 1) + dsl (al) + (f, 

where the second inequality uses Lemma 16. The result follows, using (5). | 

COROLLARY 21: Let F E C(O) such that D C_ F. Let g,~ C G~ i". Let (Sl, S~) 

be the unique edge o[ g such that s~ ~ F. Let (s2, s~) be an edge of.~ such that 
s2 E D and s' 2 r D. Assume that sl E D, and that d(sl, as~ (g)) = O. Then 

d(~, b~:(~)) < ~ ~ d(s~,.,:(~)) > d(s~,.~:(g)). 

Proof: If Sl # s2, d(s2, b82(~)) + d(s2, a~2({7)) > d(s2, bs2(g)) + d(s2, a82(g)) + 
by Lemma 19. 

If Sl = s2, one has d(s2, as2(g)) = d(Sl, as~(g)) = 0 and d(sl,bs,({~)) <_ 5 ::a 
d(sl, as~ (~)) > 0 by Lemma 20. | 

2.2 CONCLUDING RESULTS. Let C E C(O). We give a link between Qe(-[C) 

and the exit distributions induced by perturbations of (x e, ye). Denote by 

ec  = 1 + {n > 1, q(CIsn ,an,yn) < 1} 

the stage following the first one in which an action combination is played that 

might induce exit from C. Denote by Qs,x,,y, ('IC) the law of ec  under (xn, yn) 
starting from s, and set 

Qe( - IC)=  lim Qs,x,,y,(.IC). 
n--I.-t-co 

The support of a probability distribution # is denoted by Supp #. We define 

Q~(xe, y e) = {q(.Is, a,y~), where (s,a) e C x A and q(V[s,a,y~) < 1}, 

Q2c(xe, ye ) = {q(.Is, x~,b), where (s,b) e C x B and q(CIs, xes,b) < 1}, 

Q~c(x e, ye) = 

{q(.Is, a,b), where q(Cls, a,b ) = O, q(CIs, a,y~) = q(Cls, x~,b ) < 1}. 

LEMMA 22: The distribution Qe(.IC) belongs to the convex hull of Q~(x e, ye) U 
Q~(x 0, ye) u ~ ( x  ~ ye). 

Proof: F o r s e C ,  define ( A x S ) ( s ) = { ( a , b ) e A x B ,  q(CIs ,a ,b)< 1}. For 

t E S, one has 

E.ec{EA• x~(a)y~(b)q(t]s, a, b)} x {EaeVc\(.} Wp. (g)} 
Qo(tiC ) = lim 

~-.o Eg~Gc ~p.(a) 
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Thus 

where 

qe(.IC)=~-~ ~ ~,~bq(.is, a,b), 
sEC A• 

c~b = lim x~(a)y~(b){EgeCcx(~) wp~ (g)} 
e--+O EgEGc Wp~ (g) 

Observe now that, given (s, a) such that q(Cis, a, y~) < 1, and bl, be E Supp y~, 

one has 

The same property holds if one exchanges the two players. Observe also that, 

given a r Suppx~ and b r Suppy~, such that q(CIs, a,y~) < 1 or q(Cis, x~,b) < 
1, one has Otsa b : O. This suffices to yield the result. | 

We now define an alternative notion of communication. 

A perturbation of # is a distribution ~ such that Supp # c_ Supp #'. 

Given any pair (x,y) of stationary strategies and C C_ S\S*, we define a 

directed graph Gc(x, y) as follows: 

�9 the set of vertices is C; 

�9 for any two states s, s' E C, there is an edge from s to s ~ if and only if 

there exist perturbations ~ and ~ of x~ and y~ respectively such that 

q(s'is,'~s,~s ) > 0 while q(Cis,~s,~ ) = 1. 

De~nition 23: Let (x, y) be a pair of stationary strategies. A set C C_ S\S* 
c o m m u n i c a t e s  u n d e r  (x, y) if the graph Go(x, y) is strongly connected. 

LEMMA 24: I [ C E  C(O), then C communicates under (xe,ye). 

Proof'. We proceed by induction on the size of C. If ]C I -- 1, C is a closed 

singleton set under (x e, ye), hence the result holds. Let C E C(0) and :Dc be the 

collection of its sons. Let sl, s2 E C be given. We need to prove that Gc(x e, ye) 
contains a path from Sl to s2. By the induction hypothesis, this is true if Sl and 

s2 belong to the same son of C. 

Assume now that  Sl E D1 and s2 E D2, where D1 and D2 are distinct sons of 

C. We prove that  Gc(xe,y e) contains a path from sl to s2. W.l.o.g., we assume 

that  Qe(D2ID1) > 0. By Lemma 22, there exists q E Q]91 ( xe, ye) t2 Q21 (x e, ye) tJ 

QJD, ( xe, ye) such that  q(D2) > 0 and q(C) = 1. To fix the ideas, assume q E 
a t~ Q~(xe,ye) ,  and choose (~1,a1,~2) E D • A • D such that p(s2]sl, 1,Y~) > 0 

and p(CI~l , al, Y~I) = 1. In particular, the edge ($1, ~2) belongs to Gc(x e, yO). 
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By the first observation,  Gc(x  e, ye) contains a pa th  from sl  to 81 and from s2 

to s2. 

By L e m m a  7, :Dc is a recurrent  set for ~def ined  by I~(D'[D) = Q e ( D ' ] D ) .  The  

result  follows. | 
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